Hall IC

(Unit : mm)

 $(T_a=25^{\circ}C)$

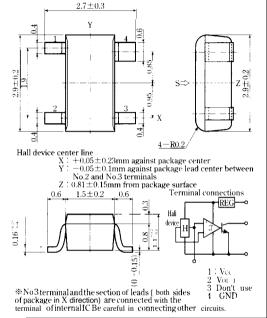
LT230A

GaAs Hall IC for Noncontact Switch (Unidirestional magnetic field-type)

Features

- Same temperature coefficient of magnetic flux density Outline (i mentions as a magnet 2.7±0.3
- \bullet operation by small magnet due to high sensitivity Operating point ${<}20 {\rm mT}$
- Combining a GaAs Hall device and an IC in a compact package (2.9 X 1.5 X 1.1mm)
- Wide operation temperature range obtained by GaAs Hall device (-20 to +125°C)
- Long life time due to noncontact-type

Applications


- FDD
- HDD
- Noncontact switch

Absolute Maximum Ratings		(Ta=25 C)		
Parameter	Symbol	Rating	Unit	
Supply voltage	Va	18	V	
output voltage	V(11 i	18	v	
Output current	10	5	mA	
Power dissipation	PD	100	mW	
Operating temperature	Topr	-20 to +125	С	
Storage temperature	T_{stg}	-55 to $+150$	С	
Soldering temperature.?.	Tsot	260	С	

* Soldering time within 10 seconds

Electrical Characteristics

					(1. 20 ()
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Operating magnetic flux density	Bop	$V_{CC}=5V$	I	13	20	mT
	Brp	$V_{00} = 5V$	5	11		m l
Hysteresis breadth	Вн	$R_L = 10 K \Omega$	1		6	mT
Operating voltage	Vcc		4.5	—	16	V
Supply current	Ice	$V_{CC} = 16V, B \le 5mT$			10,5	mA
Low level output voltage	vol.	$I_0=4mA, B \ge 20mT$	_	_	0.4	v
Output leakage current	Іон	$V c c^{-16V}, V_{00} = 16V, B \le 10mT$			10	uА
Operating point temperature drift	$\triangle B_{OP}$	$V_{CC} = 5V, T_a = -20^{\circ}C \text{ to } + 80^{\circ}C$	_	-0.2	-	%/c

As for (dimensions of tape-packaged products, refer to page 44.

SHARP

In the absence of confirmation by device specification sheets. SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device spcification sheets before using any SHARP device

Fig. 1 Operating Magnetic Flux Density vs. Supply Voltage

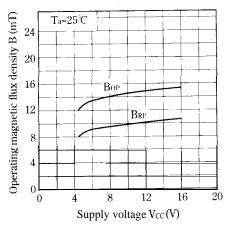
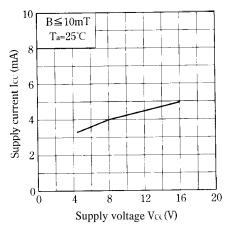



Fig. 3 Supply Current vs. Supply Voltage

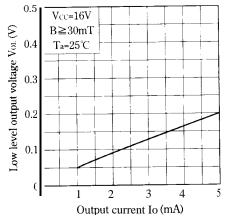


Fig. 2 Operating Magnetic Flux Density vs. Ambient Temperature

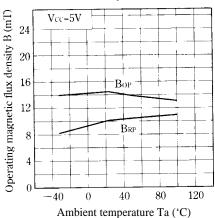


Fig. 4 Supply Current vs. Ambient Temperature

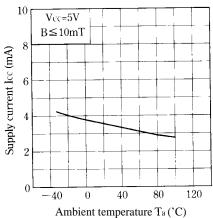
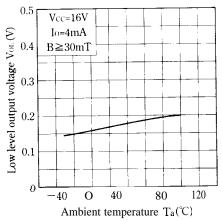



Fig. 6 Low Level Output Voltage vs. Ambient Temperature

SHARP